Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

ADVERTISEMENT

LISA Mission: Space-based Gravitational Wave detector gets ESA’s go ahead 

The Laser Interferometer Space Antenna (LISA) mission has received the go ahead of European Space Agency (ESA). This paves the way for developing the instruments and spacecrafts commencing January 2025. The mission is led by ESA and is a result of collaboration between ESA, its Member State space agencies, NASA, and an international consortium of scientists.   

Scheduled to be launched in 2035, LISA will be the first space-based gravitational wave observatory dedicated to detection and study of millihertz ripples caused by distortions in the fabric of space-time (gravitational waves) across the universe.  

Unlike the ground based gravitational wave detectors (LIGO, VIRGO, KAGRA, and LIGO India) which detect gravitational waves in frequency range of 10 Hz to 1000 Hz, LISA will be designed to detect gravitational waves of much longer wavelengths in the low frequency range between 0.1 mHz and 1 Hz.  

Ultra-low-frequency (10−9–10−8 Hz) gravitational waves (GWs) with wavelengths from weeks to years from supermassive binary black holes can be detected using ground-based Pulsar Timing Arrays (PTAs). However, low frequency gravitational waves (GWs) with frequency between 0.1 mHz and 1 Hz can neither be detected by LIGO nor by Pulsar Timing Arrays (PTAs) – the wavelength of these GWs is too long for LIGO and too short for PTAs to detect. Hence, the need for space-based GW detector.  

LISA will be a constellation of three spacecrafts in accurate equilateral triangle formation in space. Each side of the triangle will be 2.5 million km long. This formation (of the three spacecrafts) will orbit Sun in an Earth-trailing heliocentric orbit between 50 and 65 million km from Earth while maintaining a mean inter-spacecraft separation distance of 2.5 million km. This space-based configuration makes LISA an extremely large detector to study low frequency gravitational waves that ground-based detectors can not.  

For detection of GWs, LISA will use pairs of test masses (solid gold-platinum cubes) free-floating in special chambers at the heart of each spacecraft. Gravitational ripples will make extremely small changes in the distances between test masses in the spacecrafts which will be measured through laser interferometry. As demonstrated by LISA Pathfinder mission, this technology is capable of measuring changes in distances to a few billionths of a millimetre. 

LISA will detect GWs caused by merger of supermassive black holes at the centre of galaxies thus will shed light on evolution of galaxies. The mission should also detect the predicted gravitational ‘ringing’ formed in the initial moments of the universe in the first seconds after the big bang.  

*** 

References:  

  1. ESA. News -Capturing the ripples of spacetime: LISA gets go-ahead. Posted on 25 January 2024. Available at https://www.esa.int/Science_Exploration/Space_Science/Capturing_the_ripples_of_spacetime_LISA_gets_go-ahead 
  1. NASA. LISA. Available at https://lisa.nasa.gov/ 
  1. Pau Amaro-Seoane et al. 2017. Laser Interferometer Space Antenna. Preprint arXiv. DOI: https://doi.org/10.48550/arXiv.1702.00786  
  1. Baker et al. 2019. The Laser Interferometer Space Antenna: Unveiling the Millihertz Gravitational Wave Sky. Preprint arXiv. DOI: https://doi.org/10.48550/arXiv.1907.06482 

*** 

Philippe Jetzer, University of Zurich

***

Solving the biggest mysteries of the universe – with Gianfranco Bertone


***

Umesh Prasad
Umesh Prasad
Science journalist | Founder editor, Scientific European magazine

Subscribe to our newsletter

To be updated with all the latest news, offers and special announcements.

Most Popular Articles

Resveratrol Can Protect Body Muscle in Mars’ Partial Gravity

The effects of partial gravity (example on Mars) on...

Sustainable Agriculture: Economic and Environmental Conservation for Smallholding Farmers

A recent report shows a sustainable agriculture initiative in...

Discovery of Nitrogen-Fixing Cell-organelle Nitroplast in a Eukaryotic Algae   

Biosynthesis of proteins and nucleic acid require nitrogen however...
- Advertisement -
93,060FansLike
47,191FollowersFollow
1,772FollowersFollow
30SubscribersSubscribe