Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

ADVERTISEMENT

Spinal Cord Injury (SCI): Exploiting Bio-active Scaffolds to Restore Function

Self-assembled nanostructures formed using supramolecular polymers containing peptide amphiphiles (PAs) containing bio active sequences have shown great results in mouse model of SCI and holds immense promise, in humans, for an effective treatment of this debilitating condition that severely impacts the quality of life and mental health of affected people, as well as their family members and is a serious burden on health and social care system. 

A spinal cord injury, often caused by a sudden blow or cut to the spine, leads to permanent loss of strength, sensation and function below the site of the injury. Although there is no well-established cure for such injuries, a plethora of research articles have been published to understand the molecular pathology of the spinal injuries and come up with suggestions to regenerate the affected tissue, thereby promoting functional recovery and subsequently allowing people to lead a more productive and independent life. The advancement in science and technology of understanding the molecular mechanisms underlying the spinal cord injury and suggestive therapeutic approaches, in addition to rehabilitation and assistive devices, will go a long way in the recovery of people from such acute injuries and help them to lead a more meaningful life. 

In a recent article published in Science on 11th Nov 2021, Alvarez and colleagues tested supramolecular polymers containing peptide amphiphiles (PAs), in a mouse model of paralyzing human spinal cord injury (SCI)1. These PAs contained two definitive signals, the first one activates the transmembrane receptor β1-integrin and a second one activates the basic fibroblast growth factor 2 receptor. Peptide amphiphiles (PAs) are small molecules that contain hydrophobic components covalently linked to a string of amino acids (peptides). The peptide sequence can be designed to form β-sheets, while the residues farthest from the tail are charged to promote solubility and may contain a bioactive sequence. Upon dissolving in water, these PAs undergo β-sheet formation and hydrophobic collapse of the aliphatic tails and induce assembly of the molecules into supramolecular one-dimensional nanostructures (e.g., high-aspect-ratio cylindrical or ribbonlike nanofibres). Assembly is usually induced by varying concentration, pH and introduction of divalent cations2,3. These nanostructures are extremely important for biomedical functions due to their ability to display a high density of biological signals on their surface for targeting or activating pathways. 

By creating mutations in the peptide sequence in the non-signalling, non-bioactive domain, intense supramolecular motion within the nanofibres was observed, thereby improving recovery from SCI. The mutation with the highest intense dynamics, resulted not only in axon regrowth and myelination, but also led to blood vessel formation (revascularization), and motor neuron survival. 

These supramolecular polymers containing peptide amphiphiles (PAs) thus hold great promise in helping people recover from SCIs, that can have devastating effects on the lived of the patients, both physically and emotionally. Furthermore, these self-assembly nanostructures, made from supramolecular polymers containing peptide amphiphiles (PAs), can be exploited for various biomedical applications such as drug delivery, bone regeneration and decreasing blood loss during internal bleeding. 

*** 

References 

  1. Álvarez Z., et al 2021. Bioactive scaffolds with enhanced supramolecular motion promote recovery from spinal cord injury. Science. Published 11 Nov 2021. Vol 374, Issue 6569. pp. 848-856. DOI: https://doi.org/10.1126/science.abh3602 
  1. Hartgerink, J. D.; Beniash, E.; Stupp, S. I. Peptide-Amphiphile Nanofibers: a Versatile Scaffold for the Preparation of Self-Assembling Materials. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 5133– 5138, DOI: https://doi.org/10.1073/pnas.072699999 
  1. Pashuck, E. T.; Cui, H.; Stupp, S. I. Tuning Supramolecular Rigidity of Peptide Fibers Through Molecular Structure. J. Am. Chem. Soc. 2010, 132, 6041– 6046, DOI: https://doi.org/10.1021/ja908560n 

***

Rajeev Soni
Rajeev Sonihttps://web.archive.org/web/20220523060124/https://www.rajeevsoni.org/publications/
Dr. Rajeev Soni (ORCID ID : 0000-0001-7126-5864) has a Ph.D. in Biotechnology from the University of Cambridge, UK and has 25 years of experience working across the globe in various institutes and multinationals such as The Scripps Research Institute, Novartis, Novozymes, Ranbaxy, Biocon, Biomerieux and as a principal investigator with US Naval Research Lab in drug discovery, molecular diagnostics, protein expression, biologic manufacturing and business development.

Subscribe to our newsletter

To be updated with all the latest news, offers and special announcements.

Most Popular Articles

….Pale Blue Dot, the only Home We’ve Ever Known

''....astronomy is a humbling and character-building experience. There is...

“Pan-coronavirus” vaccines: RNA Polymerase Emerges as a Vaccine Target

Resistance to COVID-19 infection has been observed in health...

Soil Microbial Fuel Cells (SMFCs): The New Design Could Benefit Environment and Farmers 

The Soil Microbial Fuel Cells (SMFCs) use naturally occurring...
- Advertisement -
93,060FansLike
46,923FollowersFollow
1,772FollowersFollow
30SubscribersSubscribe