Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

ADVERTISEMENT

Detecting and Stopping Epileptic Seizures

Researchers haves shown an electronic device can detect and end epileptic seizures when implanted into brain of mice

Our brain cells called neurons either excite or inhibit other neurons around them from sending messages. There is a delicate balance of neurons which ‘excite’ and the ones which ‘stop’ the relaying of messages. In the condition called epilepsy – a chronic brain disorder which affects people of all ages and gender – neurons in one’s brain start to fire and signal to neighbouring neurons to also fire simultaneously. This causes an escalating effect which leads to imbalance between ‘exciting’ and ‘stopping’ activity. The root cause of this electrical activity is thought to be complex chemical changes which occur in nerve cells. A seizure occurs when electrical impulses escape their normal limits. A seizure affects a person’s consciousness or motor control. Seizures themselves are not an illness but are signs of different disorders in the brain. Some seizures are not noticeable but some are incapacitating for a person. While there are several kinds of seizures, the above type is associated with epilepsy. Epilepsy is one of the most common neurological disease with around 50 million people suffering from it worldwide. The most common treatment for epilepsy is use of epileptic drugs like benzodiazepines which not only have drastic side effects but are also ineffective in preventing seizures in 30 percent of epileptic patients. People with epilepsy and their families have to face stigma and discrimination attached to this disease especially in low-and-middle-income countries.

A team of British and French researchers at University of Cambridge, the École Nationale Supérieure des Mines and INSERM have shown an electronic device which when implanted in the brain of mice was able to detect the first sign of a seizure. After this detection, it was able to deliver a native brain chemical inside the brain which then inhibited the seizure from continuing further. Their innovative study has been published in Science Advances.

The electronic device is thin, soft, flexible and made of organic films allowing it to interface well with human tissue. It is also safe as does minimal damage to the brain. The electrical properties of these organic films make them ideally suited for such medical applications where interface with living tissue is needed. The neurotransmitter or drug in the device targets the origin point of the seizure and thereby signals neurons to discontinue firing. This causes the seizure to stop. A neural probe was used to transport this neurotransmitter to the affected part of the brain. This probe incorporates a mini ion pump and electrodes which monitor brain activity for potential seizure. When probe electrodes detect a neural signal belonging to a seizure, ion pump gets activated which then creates an electric field. This electric field enables drug movement across an ion exchange membrane from an internal reserve to outside of the electronic device by a process called electrophoresis which technically allows patients to control dosage and timing of the neurotransmitter drug in a more precise manner. The exact quantity of the drug to be released can be based according to strength of the electric field. This innovative method takes care of ‘when’ and ‘how’ much drug needs to be delivered for a specific patient. The drug is delivered without any added solvent solution which helps in preventing any damage to the surrounding tissue. The drug interacts efficiently with cells just outside of the device. Researchers found that only a small amount of drug was required to prevent seizures and this amount was accounted as no more than 1 percent of the entire drug which was initially added into the device. This is helpful as the device will need not to be refilled for lengthy durations. The drug used in this particular study was a native neurotransmitter in our body and it was seamlessly consumed by natural developments in the brain immediately upon its release. This suggests that the treatment described should reduce or even eradicate any undesired drug side effects.

The study needs to be performed more elaborately in mice to gauge potential side effects and then a corresponding study can be conducted in humans. It could be a while, several years perhaps, before this device is available in the market for public use. It also needs to be studied whether such a device can prevent seizures altogether. If this technique succeeds it could revolutionize medication for epilepsy and also help in other similar illnesses. There is hope that a similar approach could be used for a range of other neurological disorders including brain tumours, strokes and Parkinson’s disease.

***

{You may read the original research paper by clicking the DOI link given below in the list of cited source(s)}

Source(s)

Proctor CM et al. 2018. Electrophoretic drug delivery for seizure control. Science Advances. 4(8). https://doi.org/10.1126/sciadv.aau1291

***

SCIEU Team
SCIEU Teamhttps://www.ScientificEuropean.co.uk
Scientific European® | SCIEU.com | Significant advances in science. Impact on humankind. Inspiring minds.

Subscribe to our newsletter

To be updated with all the latest news, offers and special announcements.

Most Popular Articles

Ultrahigh Ångström-Scale Resolution Imaging of Molecules

Highest level resolution (Angstrom level) microscopy developed that could...

First Artificial Cornea

Scientists have for the very first time bioengineered a...

Probiotics Not Effective Enough in Treating ‘Stomach Flu’ in children

Twin studies show that expensive and popular probiotics may...
- Advertisement -
93,368FansLike
47,367FollowersFollow
1,772FollowersFollow
30SubscribersSubscribe